Memetic algorithm with route decomposing for periodic capacitated arc routing problem
نویسندگان
چکیده
In this paper, the Periodic Capacitated Arc Routing Problem (PCARP) is investigated. PCARP is an extension of the well-known CARP from a single period to a multi-period horizon. In PCARP, two objectives are to be minimized. One is the number of required vehicles (nv), and the other is the total cost (tc). Due to the multi-period nature, given the same graph or road network, PCARP can have a much larger solution space than the single-period CARP counterpart. Furthermore, PCARP consists of an additional allocation sub-problem (of the days to serve the arcs), which is interdependent with the routing sub-problem. Although some attempts have been made for solving PCARP, more investigations are yet to be done to further improve their performance especially on large-scale problem instances. It has been shown that optimizing nv and tc separately (hierarchically) is a good way of dealing with the two objectives. In this paper, we further improve this strategy and propose a new Route Decomposition (RD) operator thereby. Then, the RD operator is integrated into a Memetic Algorithm (MA) framework for PCARP, in which novel crossover and local search operators are designed accordingly. In addition, to improve the search efficiency, a hybridized initialization is employed to generate an initial population consisting of both heuristic and random individuals. The MA with RD (MARD) was evaluated and compared with the state-of-the-art approaches on two benchmark sets of PCARP instances and a large data set which is based on a real-world road network. The experimental results suggest that MARD outperforms the compared state-of-the-art algorithms, and improves most of the best-known solutions. The advantage of MARD becomes more obvious when the problem size increases. Thus, MARD is particularly effective in solving large-scale PCARP instances. Moreover, the efficacy of the proposed RD operator in MARD has been empirically verified.
منابع مشابه
An Improved Decomposition-Based Memetic Algorithm for Multi-Objective Capacitated Arc Routing Problem
The Capacitated Arc Routing Problem (CARP) is a challenging combinatorial optimization problem with many real-world applications, e.g., salting route optimization and fleet management. There have been many attempts at solving CARP using heuristic and meta-heuristic approaches, including evolutionary algorithms. However, almost all such attempts formulate CARP as a single-objective problem altho...
متن کاملEvolutionary Algorithms for Capacitated Arc Routing problems with Time Windows
The Capacitated Arc Routing Problem (CARP) involves vehicles routing, serving a set of arcs in a network. This NP hard problem is extended to take into account time windows, entailing a new and hard theoretical model in arc routing called the CARPTW (CARP with time windows). The CARPTW is useful for modeling urban waste collection or winter gritting. This paper presents this new model and a mem...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملA Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems
We propose an algorithmic framework that successfully addresses three vehicle routing problems: the multi-depot VRP, the periodic VRP, and the multi-depot periodic VRP with capacitated vehicles and constrained route duration. The meta-heuristic combines the exploration breadth of population-based evolutionary search, the aggressive improvement capabilities of neighborhood-based meta-heuristics,...
متن کاملCompetitive Memetic Algorithms for Arc Routing Problems
Competitive memetic algorithms for arc routing problems – P. Lacomme et al. Competitive memetic algorithms for arc routing problems – P. Lacomme et al. Abstract The Capacitated Arc Routing Problem or CARP arises in applications like waste collection or winter gritting. Metaheuristics are tools of choice for solving large instances of this NP-hard problem. The paper presents basic components tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 52 شماره
صفحات -
تاریخ انتشار 2017